ПATIBIA UПIVERSITY

 OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES
 SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti Ranjan Sahu
MODERATOR:	Prof S. C. Ray

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

1.1 Consider the circuit as shown in the below figure with a 3Ω resistor and a 1-H inductor.

1.1.1 Write down the differential equation of the circuit where current i is flowing clockwise.
1.1.2 Solve the differential equation for the current as a function of time.
1.1.3 Determine the current as a function of time in this circuit given that its initial value is 6 A
1.2 Solve the differential equation $\left(y^{2}-x\right) d x+2 y d y=0$
1.3 Find the general solution of the differential equation.

$$
\begin{equation*}
\frac{d x}{d t}+t^{2} x=0 \tag{5}
\end{equation*}
$$

Question 2

2.1 A 50 g mass attached to a spring, moving in air with initial conditions y $(0)=4 \mathrm{~cm}$ and $y^{\prime}(0)=40 \mathrm{~cm} / \mathrm{s}$. The spring is such that a 30 g mass stretches it 6 cm . Approximate the acceleration of gravity is $1000 \mathrm{~cm} / \mathrm{s}^{2}$.
Formulate the differential equation and find the movement of the mass position at any time t.
2.2 Find the general solution of $x^{\prime \prime}-3 x^{\prime}+2 x=2 t^{2}+1$
2.3 Find a particular solution of $\mathrm{x}^{\prime \prime}-\mathrm{x}=3 \mathrm{e}^{-\mathrm{t}}$

Question 3

3.1 Use matrices to find the solution for the set of equation as given below

$$
\begin{aligned}
& 4 x+8 y+z=-6 \\
& 2 x-3 y+2 z=0 \\
& x+7 y-3 z=-8
\end{aligned}
$$

3.2 Find the eigen values of the matrix A given as
$A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$
3.3 Find k if
$\mathrm{A}=\left[\begin{array}{cc}k-2 & 1 \\ 5 & k+2\end{array}\right]$ is singular

Question 4

4.1 Show that for inner product space $C[-\pi, \pi]$, the functions Sint and Cost are orthogonal.
4.2. Obtain an orthogonal basis for the subspace of $R 4$ spanned by $x_{1}=(1,0,1,0), x_{2}=(1,1,1,1)$, $x_{3}=(-1,2,0,1)$ using Gram-Schmidt process.
4.3 Using the Laplace transform find the solution for the following equation

$$
\begin{equation*}
\frac{\partial y(t)}{\partial x}-5 y(t)=e^{(5 t)} \text { with initial conditions } y(0)=0 D y(0)=b \tag{5}
\end{equation*}
$$

4.4 Obtain the value of $\mathrm{P}_{3}(\mathrm{x})$ using Rodrigues' formula

$$
\begin{equation*}
P_{n}(x)=-\frac{1}{\left(2^{\prime \prime}\right) n!} \frac{d^{\prime \prime}}{d x^{\prime \prime}}\left(x^{2}-1\right)^{\prime \prime} \tag{5}
\end{equation*}
$$

END

